Definitie : "O noţiune este definită recursivdacă în cadrul definiţiei intervine însăşi noţiunea care se defineşte .
Reguli fundamentale pentru ca recursia să fie definită corect:
Trebuie să existe şi cazuri elementare, care se pot rezolva direct.(R1)
Pentru cazurile care nu se rezolvă direct, recursia trebuie să progreseze către un caz elementar.“ (R2)
( manual clasa a X a 2000/ Ema Cherchez, Marinel Şerban)
Recursivitate = un subprogram se autoapelează. Algoritmul trebuie sa fie finit => trebuie să existe cazuri elementare, care se pot rezolva direct (R1). Tipuri Recursivitate
directă (un subprogram se autoapelează);
în cascadă (o anumită valoare este calculată în cascadă de mai multe ori /vezi Fibonacci); se recomandă utilizarea unui algoritm iterativ;
indirectă (2 subprograme (A şi B) se apelează unul pe altul );este obligatoriu definirea prototipului subprogramului;
Definitie : "O noţiune este definită recursiv dacă în cadrul definiţiei intervine însăşi noţiunea care se defineşte .
Reguli fundamentale pentru ca recursia să fie definită corect:
- Trebuie să existe şi cazuri elementare, care se pot rezolva direct.(R1)
- Pentru cazurile care nu se rezolvă direct, recursia trebuie să progreseze către un caz elementar.“ (R2)
( manual clasa a X a 2000/ Ema Cherchez, Marinel Şerban)Recursivitate = un subprogram se autoapelează.
Algoritmul trebuie sa fie finit => trebuie să existe cazuri elementare, care se pot rezolva direct (R1).
Tipuri Recursivitate
http://limbajul-c.wikispaces.com/recursivitate-exemple
Recursivitate prin exemple (AEL)
Principiul stivei AELDivide et Impera- tehnica a recursivitatii